MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.






                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,

  / = [          ] ω           .


   = [          ] ,     [  ]    .




 /  = [          ] ,     [  ]    .




A antiga teoria quântica cedeu lugar à mecânica quântica moderna quando Schrödinger desenvolveu a famosa equação que leva o seu nome. Entretanto, a primeira versão que ele desenvolveu foi a equação que hoje é conhecida como equação de Klein-Gordon, que é uma equação relativista, mas que não descrevia bem o átomo de hidrogênio, por razões que só mais tarde puderam ser entendidas. Assim, ele abandonou a primeira tentativa, chegando à sua equação (equação de Schrödinger):

 /  = [      [  ]    .

A equação de Schrödinger acima colocada é a equação "dependente do tempo", pois o tempo aparece explicitamente. Neste caso, as soluções  são funções das coordenadas espaciais e do tempo.

Quando o potencial  não depende do tempo, ou seja, quando o campo de força ao qual a partícula está submetida é conservativo, é possível separar as variáveis  e .

A equação que a parte espacial da função de onda  obedece é:

 /  = [      [  ]    .

conhecida como equação de Schrödinger "independente do tempo". Esta é uma equação de autovalores, ou seja, através dela se obtêm simultaneamente autofunções (no caso as funções de onda ) e autovalores (no caso, o conjunto das energias estacionárias ).

Formulação matemática

Mecânica clássica e mecânica quântica

A dinâmica de uma partícula pontual de massa  em um regime não-relativístico, ou seja, em velocidades muito menores que a velocidade da luz, pode ser determinada através da função lagrangiana[6][7] 

, /  = [      [  ]    .

em que  (que são respectivamente coordenadas generalizadas para a posição e a velocidade da partícula) determinam o espaço de fase do sistema e  é o potencial em que a partícula se move. Minimizando o funcional ação

 /  = [      [  ]    .

encontra-se a equação de movimento para esse sistema,

, /  = [      [  ]    .

que é a equação de Newton, desde que  /  = [      [  ]    .

Existe outra formulação equivalente da mecânica clássica, conhecida como formulação hamiltoniana e que pode ser diretamente relacionada a formulação lagrangiana acima. Para se fazer contato entre as duas formulações, define-se o momento  

, /  = [      [  ]    .

de maneira que a função hamiltoniana é dada por

, /  = [      [  ]    .

que para a escolha da lagrangiana acima, tem-se

. /  = [      [  ]    .

Assim como no caso da função lagrangiana, a hamiltoniana descreve toda a dinâmica de um sistema clássico, portanto, considerando uma variação de  tem-se um par de equações diferenciais de primeira ordem conhecidas como equações de Hamilton 

, /  = [      [  ]    .

e que equivale a equação de Newton, que é de segunda ordem. No formalismo hamiltoniano, usando a regra da cadeia, pode-se escrever qualquer variação temporal de uma função , em termos das equações de Hamilton acima, de modo que,

 

 /  = [      [  ]    .

onde o parêntese de Poisson é definido como

. /  = [      [  ]    .

Existem diversas maneiras de realizar a quantização de um sistema clássico, tais como quantização por integrais funcionais e quantização canônica. Esse último método em particular, consiste na substituição do parêntese de Poisson por comutadores[8]

, /  = [      [  ]    .

onde , são operadores num espaço de Hilbert. Com essas substituições, o parêntese de Poisson entre duas coordenadas generalizadas torna-se

. /  = [      [  ]    .

Um aspecto importante a ser observado é que os operadores  e  podem ser representados como os operadores diferenciais

 /  = [      [  ]    .

de maneira que a função hamiltoniana, torna-se um operador no espaço de Hilbert, chamado operador hamiltoniano que atua em uma função 

, /  = [      [  ]    .

que é a equação de Schrödinger.

Teoria Clássica de Campos

A formulação lagrangiana e a hamiltoniana da mecânica clássica são refinamentos da mecânica newtoniana e permite o tratamento de sistemas com um número finito de graus de liberdade. Considerando um sistema mecânico unidimensional com  graus de liberdade, que consiste de  partículas pontuais de massa , separadas por uma distância  e conectadas entre si por uma mola de constante elástica . A lagrangiana para esse sistema é:

. /  = [      [  ]    .

Esse sistema pode ser estendido facilmente para o limite em que  e . No entanto, se o comprimento total do sistema estiver fixo, tem-se o limite contínuo , de modo que a lagrangiana terá a forma

, /  = [      [  ]    .

onde  representa o deslocamento da partícula relativa a posição  no instante de tempo . Também, define-se as quantidades  . /  = [      [  ]    .

Generalizando essa discussão prévia para um sistema relativístico, tem-se uma lagrangiana que será uma função do campo , em que  e das derivadas , dessa maneira, o funcional ação pode ser escrito como

. /  = [      [  ]    .

Finalmente, a lagrangiana pode ser escrita como

, /  = [      [  ]    .

onde , é conhecida como densidade lagrangiana.[9] A equação de Euler-Lagrange é:

. /  = [      [  ]    .

Primeiras unificações. Equações relativísticas

Equação de Klein-Gordon

Como foi dito acima, quando Schrödinger primeiro procurou uma equação que regesse os sistemas quânticos, pautou sua busca admitindo uma aproximação relativista, encontrando a depois redescoberta equação de Klein-Gordon:

 /  = [      [  ]    .

onde

A equação de Klein-Gordon, às vezes chamada de equação de Klein-Fock-Gordon (ou ainda Klein-Gordon-Fock) pode ser deduzida de algumas maneiras diferentes.

Usando-se a definição relativística de energia

 /  = [      [  ]    .

chega-se à equação:

 /  = [      [  ]    .

Essa expressão, por conter operadores diferenciais sob o radical, além de apresentar dificuldades computacionais, também apresenta dificuldades conceituais, já que se torna uma teoria não-local (pelo fato de a raiz poder ser expressa como uma série infinita). Por ser uma equação de segunda ordem não permite que fique bem definida a questão da normalização da função de onda.

Fock deduziu-a através da generalização da equação de Schrödinger para campos magnéticos (onde as forças dependem da velocidade). Fock e Klein usaram ambos o método de Kaluza-Klein para deduzi-la. O motivo, só mais tarde entendido, da inadequação desta equação ao átomo de hidrogênio é que ela se aplica bem somente a partículas sem carga e de spin nulo.

Equação de Dirac

Em 1928 Paul Dirac obteve uma equação relativística baseada em dois princípios básicos

  1. A equação deveria ser linear na derivada temporal;
  2. A equação deveria ser relativisticamente covariante.

A equação obtida por ele tinha a seguinte forma:


 /  = [      [  ]    .

onde  e  não são números reais ou complexos, mas sim matrizes quadradas com N² componentes. Semelhantemente, as funções  são na verdade matrizes coluna da forma





Comments

Popular posts from this blog